
Goldstone modes in vacuum decay and first-order phase transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 1755

(http://iopscience.iop.org/0305-4470/13/5/034)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A:  Math. Gen. 13 (1980) 1755-1767. Printed in Great Britain 
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Abstract. We introduce effective Hamiltonians for Goldstone modes of the Euclidean 
group, representing fluctuations in the surface of a critical droplet o r  in the interface 
between two phases. The Euclidean invariance is non-linearly realised on the Goldstone 
fields. The Hamiltonians are non-renormalisable in more than one dimension, showing that 
the disappearance of a phase transition in one dimension for systems with a discrete 
symmetry may be interpreted in terms of the infrared instabilities induced by these modes. 
The existence and form of these Hamiltonians indicates the universality of the essential 
singularity at a first-order phase transition in models with Euclidean invariance. 

1. Introduction 

The importance of Goldstone modes for systems with a continuous symmetry is well 
known. In the context of phase transitions one thinks conventionally in terms of a 
Heisenberg-type model with O ( n )  symmetry. Below the critical temperature T, there 
are ( n  - 1) Goldstone modes whose energy goes to zero in the limits of long wavelength 
and zero external field H. Because of these Goldstone modes, the limit H +. 0 may be 
thought of as a critical point for all T < T,. It becomes important to identify the 
effective Hamiltonian describing the interactions amongst the critical modes alone. In 
terms of an isotropic ferromagnet, the effective Hamiltonian is the spin-wave theory, 
which was used by Holstein and Primakoff (1940) to predict a singular term H-”* in the 
longitudinal susceptibility in three dimensions. More generally, the effective Hamil- 
tonian is invariant under the full O ( n )  symmetry group realised in a non-linear way on 
the ( n  -1) Goldstone fields. These so-called non-linear (+ models control the 
singularities induced by the Goldstone modes below T,. In particular, in d dimensions 
they imply a term H(d-4)’2 in the longitudinal susceptibility which exists up to the 
critical temperature T, (K G Wilson unpublished, Wallace and Zia 1975, Horner and 
Schafer 1978 and references therein). Furthermore, this singularity shows that, in two 
dimensions, fluctuations in the longitudinal field become as singular as those in the 
Goldstone fields themselves. This is consistent with the theorem that the spontaneous 
magnetisation is zero at all temperatures in two dimensions for such systems (Mermin 
and Wagner 1966, Hohenberg 1967, Coleman 1973); the Goldstone modes induce 
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infrared instabilities which destroy the ordered phase. The special role of two dimen- 
sions is correspondingly reflected in the ultraviolet properties of these non-linear 
Hamiltonians; they are non-renormalisable in more than two dimensions and just 
renormalisable in two. This property has been exploited (Polyakov 1975, Migdall976, 
BrCzin and Zinn-Justin 1976a, b, BrCzin et a1 1976a, b, Nelson and Pelcovits 1976, 
1977, Hikami and BrCzin 1978) to produce E expansions for Heisenberg-like systems in 
2 + E dimensions. 

The purpose of this paper is to identify, for systems with a discrete symmetry, the 
Goldstone modes which play the roles described above for systems with a continuous 
symmetry. The key to this programme rests in recognising that in systems with a 
discrete symmetry a crucial role is played for T < T, by the surfaces separating the two 
(or more) discrete phases, such as the surface of a critical droplet in the metastable 
phase, or the planar interface between two phases. Now the positions of these surfaces 
automatically break the Euclidean invariance of the original theory and fluctuations in 
the position of these surfaces can be regarded as the Goldstone modes of the spon- 
taneously broken Euclidean invariance. Thus we are led to write down the effective 
Hamiltonians describing these fluctuations, in which the full Euclidean invariance is 
realised non-linearly. 

In the next section we review how the Goldstone modes arise in a field theory 
calculation and write down the effective Hamiltonians for these modes. We conclude in 
9 3 by discussing the significance of these models for the essential singularity at a 
first-order phase transition. The appendix contains explicit calculations of the 
singularity structure in d dimensions. 

2. The non-linear models 

Our starting point is the conventional Landau-Ginzburg-Wilson Hamiltonian for a 
one-component real field 4(x):  

The negative mass term ( -p2)  gives a double well potential describing an Ising-like 
system below its critical temperature. We are interested in small or zero external field 
H. The dimension of space is denoted by d. The partition function, free energy and 
correlation functions are obtained by the functional integral over fields 4 : 

Z = e x p - 9 =  9 4 e x p - X  I 
The simplest problem in which the Goldstone modes appear is that of the planar 
interface between two phases ( (4 )  > 0 and ( 4 )  < 0) when H = 0 (see the recent articles 
by Ohta and Kawasaki (1977), Rudnick and Jasnow (1978) and Jasnow and Rudnick 
(1978) and references therein). This is described by the familiar one-dimensional 
solution of the double potential well 
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where (z denotes for convenience the dth coordinate. The interface car? have any 
position 20 and is of thickness C L - ’ .  Given this classical solution we evaluate the effect of 
fluctuations by writing 

4 = &+d. (3) 

Expanding for 6 small we obtain a new perturbation expansion 

The nature of this perturbation expansion is controlled by the spectrum of A. Firstly, it 
is straightforward to show that 

a P 2  2 P  

azo 4% J2  
cLo(.x) = - -&(x)  = -= sech (-((z - Z.,) 

is an eigenfunction of A with zero eigenvalue; it is the Goldstone mode associated with 
the spontaneous breaking of transiatiori invariance by SJx) and the eigenfunction ( 4 )  
just corresponds to infinitesimal translation of the interface. More importantly for our 
purpose, the eigenfunctions &(p,  2) = exp(iq a p)qh,((z), where p denotes the (d - 1) 
coordinates transverse to I, have eigenvalues q 2 ;  they represent fluctuations of the 
interface away from the plane and can be regarded as the excitations of the zero-mode 
$&). Following the earlier arguments, the interface is therefore a critical problem with 
a massless field depending on the transverse coordinates p and our first aim is to obtain 
the effective interaction amongst these modes to see if higher-order t e r m  are likely to 
be important because of infrared singularities. 

In group theoretical terms we are required to find the appropriate Hamiltonian 
which is a function of a field f(p) and which is inkariant under the Euclidean group in d 
dimensions realised by non-linear transformations on the field f. This is a problem with 
a standard solution in the case of spontaneously broken internal symmetries (Weinberg 
1968, Coleman ai 1969, Callan et a1 1969, Meetz 1969, lsham 1969, Barnes er a1 
1972). In our case we are dealing with a spontaneously bioken space symmetry, the 
Euclidean group, for which the general theory of non-linear realisations has, to our 
knowledge, not been developed. However, there is a very simple geometrical picture 
which gives the required results, as follows The energy we are concerned with in these 
fluctuations is the surface energy. Geometrically the total surface area for a displace- 
ment f ( p )  away from planar is 

S = d“-’ p [ 1 +  (Vj”2]1’2. I 
The total surface area is clearly an inkariatit of the d-dimensional Euclidean group, and 
following the spin-wave approaih, we write the reduced Hamiltonian as 

1 Xetr = -r 1 dd--‘ p[ l  + (Vf)2]l”2 (7)  
1 J  

where 7 is a measure of the absolute temperature. This is clearly invariant under the 
Euclidean group of the (d - 1) transverse directions; the reader may easily verify that it 
is also invariant under the non-linear transformations: 
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(i) f + f +  a ,  corresponding to translation by amount a in the z direction, and 
(ii) f + f  - O f  a, f - Op,, corresponding to rotation of the surface by infinitesimal angle 

O in the (p, ,  z )  plane, where p, is one of the transverse directions. 
Let us now look at the properties of the Hamiltonian (7). Expanding the square root 

for small V f ,  we pick up the free term (Vf)2/2; this is in agreement with the q2 spectrum 
discussed previously. This free term has been used (Buff et a1 1965, Davis 1977, Weeks 
1977) to demonstrate that ( f 2 ) ,  which measures the wandering of the interface from 
planar, diverges in three dimensions or depends logarithmically on, for example, a 
gravitational stabilising term. We would suggest that this kind of prediction is analo- 
gous to the H-(4-d”2 singularity in the longitudinal susceptibility discussed previously, 
and that the intrinsic infrared instability of the theory is determined from the effect of 
the interaction terms, e.g. dd-’ ~ [ ( v f ) ~ ] ~  of higher order in V f .  Now simple dimen- 
sional analysis shows that such terms are dimensionless for d = 1. For d > 1, Re* in (7) 
must therefore be expected to be non-renormalisable. Correspondingly, its intrinsic 
infrared singularities are those of mean field theory for d > 1. There is no paradox 
regarding the existence of the logarithmic singularity of ( f 2 )  in three dimensions; ( f 2 )  is 
a particular correlation function which happens to be infrared-divergent below three 
dimensions, just as the longitudinal susceptibility in an isotropic magnet is divergent as 
H+O below four dimensions. The two- and four-point functions of the field f at 
non-exceptional external momenta are perfectly infrared finite for d > 1. The parallel 
with the non-linear cr models of spontaneously broken O ( n )  invariance is particularly 
striking in view of the well-known property that Ising-like models (with short-range 
interactions) have no phase transitions in less than one dimension. 

We turn now to a related problem which is even more intimately connected with the 
nature of the singularity at a first-order transition, i.e. the contribution of the critical 
droplet (and fluctuations about it) to the free energy in a metastable phase. The 
importance of droplet configurations at first-order phase transitions has been recog- 
nised for a long time (see Fisher (1967) for a review and Domb (1976) and Binder 
(1977) for more recent contributions). A significant clarification of the role of the 
critical droplet in the context of the LGW Hamiltonian (1) was made by Langer (1967). 
(The equivalent problem of vacuum decay in relativistic quantum field theories is 
discussed by Voloshin et a1 (1975), Coleman (1977), Callan and Coleman (1977), Stone 
(1977), Katz (1978) and Affleck (1979 to be published).) He envisaged taking the free 
energy of the stable phase (say, H > 0, ( 4 )  > 0) and continuing to a metastable phase 
H < 0. In order to make a smooth continuation the expectation value of the field 4 
must not be allowed to flip. In these circumstances there exists a radially symmetric 
classical solution # J c ( r )  corresponding to the critical droplet; it has an effective radius ro 
such that the (first-order) variations of the bulk and surface free energies cancel. This 
classical solution is not an elementary function, but for very small H, the droplet radius 
ro increases like IT1, and the interface between the phases approximates locally the 
planar interface (2). Hence an approximate form for 4Jr)  is 

where 4+ and 4- are the classical minima of 2. 
The Goldstone modes in this case have already been identified by Langer (1967). 

There is a d-fold degenerate eigenfunction V4, ( r )  with eigenvalue zero; it is the 1 = 1 
Goldstone mode of the spontaneously broken translation invariance. The ‘excitations’ 
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of this mode are the spherical harmonic excitations with angular momentum I ;  these 
have eigenvalues 

[l +0(12H2)]  
( I  - 1)(1+ d - 1) 

El = r i  (9) 

which are determined directly from the angular momentum barrier I ( I  + d - 2 ) / r 2  (in d 
dimensions) shifted so that I = 1 is the zero mode. The energy of the lowest mode 1 = 0 
is negative and this implies that in the context of a steepest descent calculation the 
critical droplet generates the imaginary part of the free energy in this metastable state, 
as discussed by Langer (1967). 

The important point as far as this paper is concerned is that in the limit H + 0 of 
interest, r O + a  and we have a band of Goldstone excitations (9) corresponding to 
spherical harmonic perturbations of the spherical droplet. Again, there is a simple 
geometrical picture which enables us to obtain the effective Hamiltonian invariant 
under a non-linear action of the Euclidean group on the field which is now a function of 
angles or unit vectors,f(q) (q2 = 1). Consider a droplet which deviates from the critical 
droplet by a fieldf(q) defined as shown in figure 1. Physically there are two contribu- 
tions to the energy of such a droplet, the bulk free energy, proportional to the volume of 
the droplet and the external field 

Rv= -- ‘ H I  I dR (ro + f)d, 
d 

and the surface energy of the interface 

Here Lii = x,a/axi -xia/axi is the angular momentum generator of rotation in the ij 
plane. There are many ways of obtaining the geometrical result (11) for the surface 

Figure 1. Droplets are described by a fieldf(9) which gives the radial displacement from a 
spherical droplet of radius ro. 
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area; we found it convenient to generate the normal to the surface 

using the neighbouring points ( r ~ + f ( q ) ) q  and ( r o - t . f ( q  - t .aq))(V +6q) (where 8 * ] k  = 
w,,Lijt7k/2) which lie on the  surface. 

The nonlinear transformations on the field f under which (10) and (11) are 
invariant can also be obtained geometrically as shown in figure 2. The field f ( q )  
corresponding to the droplet translated by a vector a (the broken line) is obtained by i! 
simple geometrical construction. For infinitesimal a the result is 

Figure 2. The translated droplet (hroken line) is described by a field f ( 7 )  which can be 
constructed geometrically as shown. 

The last term involving the rotation arises from the fact that the new field f’ is the 
translation by a q of the original field f at a rotated point 6 as shown in figure 2. The 
reader may verify directly that expressions (10) and (11) are invariant under the 
non-linear transformation (12); we remark only that the energy densities are invariant 
only up CO rota1 divergences (involving I,,,) which vanish i n  the integral J di3, over all 
angles. 

The full effective Ilamiltonian for surface fluctuations of the critical droplet is 
therefore given by 

The radius ro is chosen so that we are perturbing about an extremum of <Teff> i.e. i f )  = 0. 
At  lowest order in perturbation theory this means ensuring that the term linear in f in 
(13) vanishes, i.e. If$!= (U’ - l ) / r a .  Using this value of H we can expand up tc? 
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second. order in f. This yields the free Hamiltonian 

xo = Irr,  1 dfi [(i-l,f)2/2 - (d - 1)f'I 1 d--3  

= ZrG dSh f [-L,,L,,/2 -- (d - l)] f (14) d - 3 1  
after integration by parts. Now the total angular momentum operator L,,L,, has 
eigenvalues -21(1+ d -- 2) in d dimensions. Hence expression (14) correctly reproduces 
the spectrum (9), up eo a rescaling of 2 by rgd-'. 

Expanding (10) and (11) to higher order to obtain the interaction terms, we see 
again the appearance of high derivative couplings involving L,,f. The ultraviolet 
divergences come from high angular momentum and are of the same character as those 
of the planar interface model (7), i.e. they are non-renormalisable in more than one 
dimension. Indeed, the effective Hamiltonian (13) may be regarded as an infrared 
regularisation of (1). We tentatively therefore draw the same conclusions as for the 
planar interface: the Hamiltonian (1 3) represents the Goldstone modes whose flucrua- 
tions destroy the ordering and ensure the absence of a phase transition in systems with a 
discrete symmetry in iess than one dimension. 

3. The first-order phrase transition 

It is pertinent to discuss the implications of the above remarks for the singularity at a 
first-order phase transition. In the appendix we have generalised the calculation of 
Langer (1967) to obtain the imaginary part of the free energy density in the metastable 
state in d dimensions. The result of the calculation is 

4-d -1  

x { l + O [ ( y )  I) 1 < d < 5 , d # t 3 .  

We have written this espression in terms of the dimensionless effective coupling g / k 4 - d  
and effective field N J g / p ' .  A and B are dimensionless constants,The terms indicated 
in the exponential are corrections to the leading terms B(p3/lHlJg)d-' of order H, H 2 ,  
etc, in principle. (This is for the general case allowing for an asymmetric double well; we 
believe that for the qj4 calculation of the appendix these corrections are, in fact, of order 
H', H 4 ,  etc.) The final bracket is to remind us that no explicit calculations have been 
made beyond some one-loop effects; the O ( g / p  4 - d )  are certainly important near the 
critical temperature. The restriction of the result ( I  5a)  for d f 3 is explained in the 
appendix; for d = 3 the Goldstone excitations produce different logarithmic cor- 
rections, which yield for the free energy density 

x {  l+O[($j]  d = 3 .  

This result differs from that quoted in Langer's paper (1967); he quotes the exponent 
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8/3  rather than 7/3. We would like to stress two aspects of the result (15). Firstly, we 
would remark that the result is likely to be much more universal than one might 
anticipate. All of the factors are associated simply with the geometrical features of a 
critical droplet of radius ro - 1Hl-l. They do not depend on the specific form of the 
double well potential. Even the infrared logarithm from the modes (9) is associated 
with the universal Hamiltonian (13). Further we speculate that the high derivative 
nature of (13) ensures that there will be no further singularities from the Goldstone 
modes at higher orders. 

The only modification to the result (15) which we can envisage concerns the 
possibility of a roughening-type transition (Weeks et a1 1973, Chui and Weeks 1976, 
Kosterlitz 1977, Knops 1977, Ohta and Kawasaki 1978). This transition is con- 
ventionally considered in the context of a planar interface; models in which the 
Euclidean invariance is broken by a microscopic length scale can exhibit a transition 
from interface behaviour described by (7) to a localised interface of finite width as the 
temperature is lowered through the roughening temperature TR. If the analogous 
phenomenon occurs for the fluctuations in the surface of the critical droplet, then we 
would expect that the infrared singularities (In ro terms) predicted from the Hamil- 
tonian (13) would be frozen out at temperatures T < TR. 

Secondly, if we can assume that the singularities of %near H = 0 permit a dispersion 
relation involving the discontinuity 2 Im 9 across the tip of the cut along the H < 0 axis, 
then the essential singularity in the free energy for H > 0 is given by 

d H ’  Im 9(H’) 
H ’ - H  ’ 

In this expression, Im %(U‘) is given by (15); apart from the Goldstone modes handled 
as described above, this is a ‘one-length-scale calculation’ (ro - IH’I-’). We can 
interpret the dispersion integral over H’ as a sum over the contribution of ‘virtual 
droplets’ of a continuous range of radii-a ‘many-length-scale’ contribution to 9. We 
believe that the dispersion integral (16) is a good way to understand the ‘sum over 
droplets’ responsible for the essential singularity in 9 in the stable region. It provides 
the basis for a droplet model in which the deviations from spherical droplets are 
precisely controlled by the effective Hamiltonian (13). 

In the context of a ‘fate of the false vacuum’ calculation, we have extended the 
results of Callan and Coleman (1977) by computing the ‘universal’ infrared singular 
part of the functioyal determinant? over small oscillations. Thus we correct the leading 
power of p3/IHIJgin (1Sa) from id - l ) d / 2  to ( d  - 3 ) d / 2  and in (1Sb)  from 3 to 7/3.  

In conclusion, although there are many gaps in detail in the above picture, we 
believe it provides new insight into the nature of the singularity at a first-order phase 
transition and into the disappearance of a phase transition in Ising-like systems as the 
dimension of space is lowered to 1. 
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Appendix 

In this appendix we review the calculations leading to the imaginary part of the free 
energy quoted in equations (15a) and (15b). The calculations follow very closely those 
of Langer (1967) but are in the style of the more recent work of Coleman (1977), Callan 
and Coleman (1977), Katz (1978), Stone (1977) and Affleck (1979 to be published). 
Our contribution corrects a numerical error in Langer’s result for three dimensions, and 
extends his calculation to d dimensions. 

The starting point is the LGW Hamiltonian (1) and the classical solution 4Jx)  
representing the critical droplet and given approximately in (8) for a small external 
field. We now make the substitution 4 (x )  = qhC(x - xo) + 6 in the functional integral for 
the free energy. The coordinate xo just represents the position of the centre of the 
droplet. We control the translation mode of zero energy by excluding this mode from 
the ‘small oscillations’ field 6, and integrating exactly over the coordinate xo as a 
collective coordinate. The result of this substitution is a contribution 

94 exp - E - exp[ - X(4,)1( ddx) 1 96J exp( -1 I + O(6’)) 

J is the Jacobian factor for the change of integration variabIes, involving the norm of the 
zero eigenfunction a.&, for each of the d zero modes: 

dl 2 

(V4J2ddx) [1+0(6 ) ] .  (A21 

The quadratic form is given by 

and translating and using the spherical symmetry of the droplet, we have 

d2 d - 1  d I ( I+d-2)  
& = + - p 2 +  p 2  V(r) 

dr2 r dr r2 

where V(r) comes from 4 ? ( x ) .  We know that V(r) is such that dl has the d-fold 
degenerate mode aVdc(x) .  This ha2 exactly zero energy and is given approximately 
from (8) by (x”/r)  sech2[p(r - ro)/d2]; it is a state bound at radius ro, i.e. on the surface 
of the droplet. This is the mode which enters the Jacobian (A2). The 1 depsndence of 
the excitations (with approximate wavefunctions Y;” sech2[F(r - ro)/d2]) can be 
obtained from lowest order in perturbation theory of the term I ( I  + d -2)/r2. Since 
these states are localised at r = ro we obtain the result (9) for the energy levels F,l(n = 0): 

[I + ~ ( p - ~ r ~ ~ ) ] .  
( I  - 1 ) ( I +  d - 1) 

Eoi = 2 ro 
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The corrections to this result come from higher orders in perturbation theory in, for 
example, 1(1+ d - 2 ) / r 2 ;  they involve intermediate states of energy O(p2)  and hence 
these corrections are negligible provided 1 ( 1  + d  - 2 ) / ( r & ~ ' ) ~  1. These are the only 
modes whose energy tends to zero for small H ;  the other eigenvalues of h! (consisting in 
the 9" theory of a set of rotational excitations of a bound state starting at El,o = 3p2/2 
and a band of continuum scattering states starting at E = 2p2) are separated by a gap of 
order p2. Thus we need only consider Eo, when evaluating the infrared singularity in 
the free energy. 

The actual quantity we need to calculate is the imaginary part of the free energy 4 
per unit volume. By a standard argument (Callan and Coleman 1977) we exponentiate 
the result (Al)  to give the contribution of a dilute gas of widely separated 'criticai 
droplets' bo 2. Thus the contribution of the droplets to = In Z is of the form 

where d e t A '  is the product of eigenvalues of Jd with the d zero-energy modes 
removed. and det A. is the product of eigenvalues of the quadratic part of %'evaluated 
about the unstable ground state. The high-energy modes of A' and do control the 
ultraviolet renormalisations OS the theory and a detailed computation of the complete 
functional determinant is needed to fix the scale factor in (A5). We, however, are only 
interested in the infrared structure of and thus need only consider the modes Eo, 
from (A4) and the corresponding modes with energy of order p 2  in Ao. Thus, for our 
purpose we have 

Here 

is the degeneracy of the d-dimensional spherical harmonics. The 1 =: 0 mode in the 
denominator has negative energy and thus contributes a factor i to the right-hand side, 
showing that the droplets indeed generate an imaginary part for 9. The upper limit L is 
given by L 2 - r i p 2  where the approximation (A4) breaks down. We are now in a 
position to compute the factors in (AQ). 

A l .  1. The classical energy 

We have constructed qbc so that it tends to the metastable minimum q5+ as r -+ CO. Thus 
we have X ( 4 J  = %'(4+) +convergent integrals, where R(++) is just the classical 
approximation for the free energy in the metastable phase; it contributes additively to 
the free energy and does not exponentiate in the dilute gas approximation leading to 
(A.5). Neglecting this term, we proceed to evaluate the remaining integrals in X ( 4 c )  for 
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small H and large ro. The result is 

There is an extremum of this expression (a functional saddle point in 2) at 

& ( d - 1 )  p 2  
ro = - 

3 IHlJg 
with energy 

%( Q c )  zz -- - - 

The coefficients of this energy and of ro are not universal; they clearly depend on the 
structure of the 44 theory. The singularity structure is, however, universal for couplings 
of the appropriate dimensionality, and takes the form 

A1 -2. The Jacobian 

The Jacobian for any system with a quadratic kinetic part may be evaluated by a simple 
virial argument (Callan and Coleman 1977). We have 

%= ddx &'4)2+ ddx V(4) .  I I 
At 4 = 4Jx) we have a saddle point of %? and thus %[u),(hx)] has an extremum at h = 1. 
Now 

and the J-acobian is given by 

A1.3. The spectrum of Goldstone zxcitations 

We seek to compute the singularity structure of 
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with upper limit L = Drop, D - 1. On inserting the expression for vI, we find 

( 1 - l ) ( l + d - 1 )  
d p  T ( d )  f v11n 

1=2 

L 

1=2 
+ 2(d + l ) T ( d )  In(r0p) + r(l+ d )  

-4 2(d  - 2 )  +( - 2 d 2 + 6 d  - 2 8 / 3 )  + 2 ( d  - 4 ) ( d 2 - 2 d + 4 )  +- i- r(i+ 2 )  r(i + 3 )  r(i + 4) r(i + 5 )  

+ pieces finite as L + CO for d < 5 ,  ('41 1 )  

The parts of this sum which behave as powers of ro have no universal significance, for 
they are adjusted or even completely cancelled by ultraviolet renormalisations. The 
ln(rop) part, on the other hand, is not expected to be affected by short distance 
structure, and enters as a correction to the leading power of p 3 / H 4  in (15 ) .  Apart 
from the term in ( A l l )  explicitly containing a logarithm, the only other source of 
logarithms is a term in the sum tending to a harmonic series ( l - ' ) ,  in some integer 
dimension. For d = 1, the calculation makes no sense, while for d = 2 or 4 the 
appropriate term has zero coefficient. Thus we need only consider d = 3 ,  where we have 

L 

1=2 
for large L. 28 28 7 1 (1+3)- '-  - 7 I n L  

Thus our result is 

i p d ( L )  - d  exp[ (constant)( &) d - l ]  d Z 3 

ips(-) exp[ ( c o n ~ t a n t ) ( ~ ) ~ ]  d = 3.  
(A121 

lHl Jg 

lHI Jg /HI Jg 

3 - 2 / 3  3 

The reader will note that the form of this singularity is independent of the exact choice 
of D, as it arises from modes with 1 << L. 

We finally assemble these results ( A 8 ) ,  (A9) and ( A 1 2 )  according to (A5) to give 
( 1 5 )  as our final result for the imaginary part of 9 per unit volume. 
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